Year 10H Scheme of Work

Unit	
Rounding, Estimation and Bounds	Truncate numbers to a given degree of accuracy; Calculate the upper and lower bounds of numbers given to varying degrees of accuracy; Use inequality notation to specify an error interval due to truncation or rounding; Calculate the upper and lower bounds of an expression involving the four operations; Find the upper and lower bounds in real-life situations using measurements given to appropriate degrees of accuracy; Find the upper and lower bounds of calculations involving perimeters, areas and volumes of 2D and 3D shapes; Calculate the upper and lower bounds of calculations, particularly when working with measurements;
Volume and Surface Area	Surface Area Find the surface area of a pyramid; Find the surface area of a sphere; Find the surface area of a cone; Find the surface area of compound solids constructed from cubes, cuboids, cones, pyramids, spheres, hemispheres, cylinders; Give answers to an appropriate degree of accuracy or in terms of $\pi ;$ Volume Recall and use the formula for volume of pyramid; Use the formulae for volume of spheres and cones;
Find the volume of a frustum of a cone; Find the volume of compound solids constructed from cubes, cuboids, cones, pyramids, spheres, hemispheres, cylinders; Give answers to an appropriate degree of accuracy or in terms of $\pi ;$ Combined Solve problems involving more complex shapes and solids, including segments of circles and frustums; Estimating surface area, perimeter and volume by rounding measurements to 1 significant figure to check reasonableness of answers. Form equations involving more complex shapes and solve these equations;	

Algebraic Manipulation and
Introducing Functions
Angles: Parallel Lines, Polygons and
Circle Theorems 1

Factorisation and Use in Algebraic Fractions:

Factorise quadratic expressions of the form $a x^{2}+b x+c$, including cases where $a>1$;
Solve quadratic equations by factorisation (including where $a>1$) and sketch an appropriate graph;
Factorise quadratic expressions using the difference of two squares;
Simplify algebraic fractions by cancelling and by factorising;

Substitution and Function Notation:

Use function notation and evaluate $f(x)$ for a given value of x;
Find $f(x)+g(x)$ and $f(x)-g(x), 2 f(x), f(3 x)$ etc algebraically;

Angles in Parallel Lines

Understand and use the angle properties of parallel lines and find missing angles using the properties of corresponding, alternate, vertically opposite and co-interior angles, giving reasons

Angles in Polygons:

Use the sum of the exterior angles of any polygon is 360°
Use the sum of the interior angles of an n-sided polygon
Use the sum of the interior angle and the exterior angle is 180°
Find the size of each interior angle, or the size of each exterior angle, or the number of sides of a regular polygon, and use the sum of angles of irregular polygons
Calculate the angles of regular polygons and use these to solve problems;
Use the side/angle properties of compound shapes made up of triangles, lines and quadrilaterals, including
solving angle and symmetry problems for shapes in the first quadrant, more complex problems and using

algebra

Use angle facts to demonstrate how shapes would 'fit together' and work out interior angles of shapes in a

pattern

Circle Theorems

Use the facts that

the angle subtended by an arc at the centre of a circle is twice the angle subtended at any point on the circumference;
the angle in a semicircle is a right angl
angles in the same segment are equal
opposite angles of a cyclic quadrilateral sum to 180°
along with isosceles triangles (radius properties) to find and give reasons for missing angles on diagrams

Indices	Find the value of calculations using indices including positive, fractional and negative indices; Recall that $n^{0}=1$ and $n^{-1}=1 / n$ for positive integers Understand that the inverse operation of raising a positive number to a power n is raising the result of this operation to the power $1 / n$ Understand and use fractional indices Use index laws to simplify and calculate the value of numerical expressions involving multiplication and division of integer powers, fractional and negative powers, and powers of a power Solve problems using index laws Solve equations involving indices by changing the base, e.g. 16 $\times 2^{12}$
Sequences	Continue a quadratic sequence and use the nth term to generate terms; Find the nth term of quadratic sequences; Distinguish between arithmetic and geometric sequences; Use finite/infinite and ascending/descending to describe sequences; Recognise and use simple geometric progressions (r^{n} where n is an integer, and r is a rational number >0 or a surd); Continue geometric progression and find term to term rule, including negative, fraction and decimal terms; Solve problems involving sequences from real life situations. Recognise and work with Fibonacci-type sequences
Recurring Decimals	Convert a fraction to a recurring decimal; Convert a recurring decimal to a fraction;
Quadratic Equations and Graphs	Set up and solve quadratic equations; Complete the square on a quadratic expression and use to solve a quadratic equation, including leaving answers in surd form; Solve quadratic equations that need rearranging; Solve quadratic equations by using the quadratic formula; Identify roots, turning points and lines of symmetry of quadratic graphs; Use roots, turning points and lines of symmetry to sketch a quadratic graph;

Surds	Simplify a surd using square numbers; Calculate with surds, including the four operations and the use of brackets; Rationalise the denominator including $\frac{1}{a+\sqrt{b}}$
Changing the Subject and Inverse Functions	Change the subject of a formula, including cases where the subject occurs on both sides of the formula, or where a power of the subject appears Change the subject of a formula where all variables are in the denominators Know that $f^{-1}(x)$ refers to the inverse function Find the inverse of a linear function
Algebraic Proportion	Calculate an unknown quantity from quantities that vary in direct or inverse proportion; Identify direct proportion from a table of values, by comparing ratios of values, for x^{2} and x^{3} relationships; Identify inverse proportion from a table of values, by looking for a constant product; Write statements of proportionality for quantities directly proportional to the square, cube or other power of another quantity; Use $y=k x$ to solve direct proportion problems, including questions where students find k, and then use k to find another value; Use $y=k / x$ to solve inverse proportion problems; Identify direct proportion from a graph; Recognise when values are in direct or inverse proportion by reference to the graph form, and use a graph to find the value of k in $y=k x$; Relate algebraic solutions to graphical representation of the equations; Solve problems involving inverse proportion using graphs by plotting and reading values from graphs; Set up and use equations to solve word and other problems involving direct or inverse proportion; Solve problems involving inverse proportionality e.g. number of workers;
Plans and Elevations	Understand and draw front and side elevations and plans of shapes made from simple solids; Given the front and side elevations and the plan of a solid, draw a sketch of the 3D solid;

Linear Graphs and Inequalities	Linear Graphs Plot and draw graphs of straight lines in the form ax + by $=\mathrm{c} ;$ Identify and interpret gradient from an equation ax $+\mathrm{by}=\mathrm{c} ;$ Find the equation of a straight line from a graph in the form $\mathrm{ax}+\mathrm{by}=\mathrm{c} ;$ Find the equation of the line through one point with a given gradient; Find the equation of the line through two given points; Interpret and analyse information presented in a range of linear graphs; Use gradients to interpret how one variable changes in relation to another; Understand that perpendicular lines have gradients that are negative reciprocals of each other; Find the equation of a line perpendicular to a given line going through a given point; Inequalities Solve linear inequalities in two variables graphically; Show the solution set of several inequalities in two variables on a graph; Solve two linear inequalities in x, find the solution sets and compare them to see which value of x satisfies both solve linear inequalities in two variables algebraically; Use the correct notation to show inclusive and exclusive inequalities.
Proportional Reasoning	Solve problems involving speed, density or pressure; Convert compound units; Work with multiple compound measures to find an average speed or density of a compound; Use the capture-recapture method to estimate the size of a population
Right Angled Triangles in 2D and 3D	Recall and apply Pythagoras' Theorem; Recall and apply trigonometric ratios to find missing lengths and angles; Know the exact values of sin θ and cos θ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and $90^{\circ} ;$ know the exact value of tan θ for $\theta=$ $0^{\circ}, 30^{\circ}, 45^{\circ}$ and $60^{\circ} ;$ Recognise trigonometric graphs and the link to exact values; Deduce whether Pythagoras' Theorem or trigonometry is an appropriate method to solve a problem Understand, recall and use trigonometric relationships and Pythagoras' Theorem to solve problems in $3 D$ configurations; Calculate the length of a diagonal of a cuboid; Find the angle between a line and a plane;

Solving Linear and Quadratic	
Simultaneous Equations	Find the exact solutions of two simultaneous equations in two unknowns Use elimination or substitution to solve simultaneous equations Solve exactly, by elimination of an unknown, two simultaneous equations in two unknowns: linear / linear, including where both need multiplying linear / quadratic linear / $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$ Set up and solve a pair of simultaneous equations in two variables for each of the above scenarios, including to represent a situation Interpret the solution in the context of the problem Understand that a point of intersection of two graphs represents a solution of a pair of simultaneous equations Solve simultaneous equations graphically, including two linear equations, one linear and one quadratic function (line and circle graphically follows later) Solve simultaneous equations representing a real-life situation graphically, and interpret the solution in the context of the problem Rearrange an equation to identify an appropriate straight line to draw to find a solution
Similarity	Prove that two shapes are similar by showing that all corresponding angles are equal in size and/or lengths of sides are in the same ratio/one is an enlargement of the other, giving the scale factor; Use formal geometric proof for the similarity of two given triangles; Identify the scale factor of an enlargement of a similar shape as the ratio of the lengths of two corresponding sides; Write the lengths, areas and volumes of two shapes as ratios in their simplest form; Find missing lengths, areas and volumes in similar 3D solids; Know the relationships between linear, area and volume scale factors of mathematically similar shapes and solids; Use the relationship between enlargement and areas and volumes of simple shapes and solids; Understand the effect of enlargement on angles, perimeter, area and volume of shapes and solids; Solve problems involving frustums of cones where you have to find missing lengths first using similar triangles.
Composite Functions	For two functions $f(x)$ and g(x), find gf(x), both algebraically and where x is a given number; For a function, $f(x)$ find ff($x) ;$ Solve problems involving composite functions e.g. fg $(x)=g f(x)$

Growth and Decay	Find the original amount given the final amount after a percentage increase or decrease (reverse percentages), including VAT; Use calculators for reverse percentage calculations by doing an appropriate division; Work out the multiplier for repeated proportional change as a single decimal number; Represent repeated proportional change using a multiplier raised to a power, use this to solve problems involving compound interest and depreciation; Use trial and improvement to find an unknown power in proportional change problems; Set up, solve and interpret the answers in growth and decay problems;
Transformations	Transformations Translate a shape given a column vector; Understand the effect of one translation followed by another, in terms of column vectors; Reflect a shape in a given mirror line; Rotate a shape given a centre, an angle and a direction; Enlarge a shape given a scale factor (positive, negative or fractional) and a centre; Transform 2D shapes using combined rotations, reflections, translations, or enlargements; Describing Transformations Identify the equation of a line of symmetry; Describe reflections on a coordinate grid; Find the centre of rotation, angle and direction of rotation and describe rotations fully using the angle, direction of turn and centre; Use column vectors to describe and transform 2D shapes using single translations on a coordinate grid; Find the centre of enlargement by drawing; Describe enlargements by a positive integer, negative integer or fractional scale factor; Describe 2D shapes using combined rotations, reflections, translations, or enlargements; Properties of Transformations Understand that distances and angles are preserved under rotations and translations, so that any figure is congruent under either of these transformations; Understand that distances and angles are preserved under reflections; Understand that an enlargement results in a similar shape; Identify invariant points; Describe the changes and invariance achieved by combinations of rotations, reflections and translations.

